
Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #11
Compilation, Debugging, Project Management

Part I

0.1 Introduction

The experiment intends to present the famous gcc compiler, the gdb debugger and show students
how to use makefiles to better manage projects. Students are assumed to be already familiar
with the C-language. We’ve included an appendix at the end of the current experiment as a
review for the C-language.

Students will be shown how to compile source code and create executables using the gcc compiler.
Moreover, students will be shown how to create libraries (both static libraries and dynamic
libraries) using the archive command ar and how to link to these libraries during the compilation
phase. In the next experiment (part II), they will be shown how to use the gdb debugger in
order to debug code and discover defects (or potential defects). Finally, students will be shown
how to use a makefile that will help better manage a development project during compilation,
setup and installation.

0.2 Objectives

The objectives of the experiment is to learn the following:

• Give a quick overview of the GNU project.

• Show students on how to use the gcc compiler and the ar archive command.

• Show students on how to use the gdb debugger.

• Show students on how to use a makefile to manage a development project.

0.3 The GNU project

The GNU project was launched in 1984 to develop a complete Unix-like operating system which
is free softwaresoftware which respects your freedom1.

The GNU operating system is a complete free software system, upward-compatible with Unix.
GNU stands for GNU’s Not Unix. The name GNU was chosen because it met a few requirements
among which it was a recursive acronym for ”GNU’s Not Unix”

The word free in ”free software” pertains to freedom, not price. You may or may not pay a price
to get GNU software. Either way, once you have the software you have three specific freedoms in
using it. First, the freedom to copy the program and give it away to your friends and co-workers;
second, the freedom to change the program as you wish, by having full access to source code;
third, the freedom to distribute an improved version and thus help build the community. (If you
redistribute GNU software, you may charge a fee for the physical act of transferring a copy, or
you may give away copies).

The project to develop the GNU system is called the GNU Project. The GNU Project was

1The GNU Operating System - http://www.gnu.org - 2011.

1

conceived in 1983 as a way of bringing back the cooperative spirit that prevailed in the computing
community in earlier days-to make cooperation possible once again by removing the obstacles
to cooperation imposed by the owners of proprietary software. By the 1980s, almost all software
was proprietary, which means that it had owners who forbid and prevent cooperation by users.
This made the GNU Project necessary.

It was decided to make the operating system compatible with Unix because the overall design
was already proven and portable, and because compatibility makes it easy for Unix users to
switch from Unix to GNU.

A Unix-like operating system is much more than a kernel; it also includes compilers, editors,
text formatters, mail software, and many other things. Thus, writing a whole operating system
is a very large job.

The GNU Project is not limited to the core operating system. The aim is to provide a whole
spectrum of software, whatever many users want to have. This includes application software.

In order to provide software for users who are not computer experts, a graphical desktop called
(GNOME) was developed to help beginners use the GNU system.

The applications that GNU make available include editors such as emacs, the famous gcc com-
piler and gdb debugger. To see the list of all the applications, visit http://directory.fsf.org.

0.3.1 The gcc compiler

The GNU Compiler Collection is a full-featured ANSI C compiler with support for K&R C,
as well as C++, Objective C, Java, Objective C++, Ada and Fortran. GCC provides many
levels of source code error checking traditionally provided by other tools, produces debugging
information, and can perform many different optimizations to the resulting object code.

Consider the following C-code:

#include <stdio.h>

/* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 */

main()

{

int fahr, celsius;

int lower, upper, step;

lower = 0; /* lower limit of temperature scale */

upper = 300; /* upper limit */

step = 20; /* step size */

fahr = lower;

while (fahr <= upper) {

celsius = 5 * (fahr-32) / 9;

printf("%d\t%d\n", fahr, celsius);

fahr = fahr + step;

}

}

Copy the above code in a file called celsius.c. To compile the code and produce the object
code celsius.o, we execute the following:

gcc -c celsius.c

2

If errors are encountered during the compilation phase, the line number at which the error(s)
was (were) encountered will be displayed on the standard output. As an example, remove any
of the semicolons in the above code and check on the error messages that get displayed.

You can list symbols from object files using the command nm as follows:

nm celsius.o

You’ll get the following output:

00000000 T _main

U _printf

The symbol T in the above output implies that the symbol is in the text (code) section while
the symbol U implies that the symbol is undefined. Many more symbols are available and each
has its own significance. Do a man nm to get to know the remaining symbols.

Note that the command nm applies on object files with extension .o as well as on executables.

If you intend to create an executable from file celsius.c (if the main function exists), you
execute the following:

gcc celsius.c

An executable file named a.out will be created in the local directory. You can run the executable
as follows:

./a.out

Instead of renaming the executable a.out to a different name, you can invoke the gcc command
using the -o option as follows:

gcc celsius.c -o celsius

The executable named celsius will be created in the local directory and the executable can be
invoked as follows:

./celsius

If you execute the command nm on the executable celsius (nm celsius), you might get the
following output:

080495c0 A __bss_start

080482fc t call_gmon_start

080495c0 b completed.4583

080494c0 d __CTOR_END__

080494bc d __CTOR_LIST__

080495b4 D __data_start

080495b4 W data_start

08048464 t __do_global_ctors_aux

08048320 t __do_global_dtors_aux

080495b8 D __dso_handle

080494c8 d __DTOR_END__

080494c4 d __DTOR_LIST__

080494d0 D _DYNAMIC

080495c0 A _edata

080495c4 A _end

0804848c T _fini

080494bc A __fini_array_end

080494bc A __fini_array_start

080484a8 R _fp_hw

08048354 t frame_dummy

3

080484b8 r __FRAME_END__

0804959c D _GLOBAL_OFFSET_TABLE_

w __gmon_start__

08048280 T _init

080494bc A __init_array_end

080494bc A __init_array_start

080484ac R _IO_stdin_used

080494cc d __JCR_END__

080494cc d __JCR_LIST__

w _Jv_RegisterClasses

0804845c T __libc_csu_fini

0804840c T __libc_csu_init

U __libc_start_main@@GLIBC_2.0

0804837c T main

080495bc d p.4582

080494bc A __preinit_array_end

080494bc A __preinit_array_start

U printf@@GLIBC_2.0

080482d8 T _start

Notice the different symbols that you get in the second column above.

The compiler gcc can be invoked with plenty of options that can make it do more check-ups. A
nice option is the -Wunused that points out all the defined but unused variables. It can be used
as follows:

gcc -Wunused file.c

To try it, assume you have the following code:

#include <stdio.h>

/* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 */

main()

{

int fahr, celsius;

int lower, upper, step, noUseVar;

lower = 0; /* lower limit of temperature scale */

upper = 300; /* upper limit */

step = 20; /* step size */

fahr = lower;

while (fahr <= upper) {

celsius = 5 * (fahr-32) / 9;

printf("%d\t%d\n", fahr, celsius);

fahr = fahr + step;

}

}

Save the above code in a file called celsius unused.c and compile it as follows:

gcc -Wunused celsius unused.c -o celsius unused

Check on the warning message that you get regarding the variable noUseVar.

4

Another common source of problems is the use and manipulation of uninitialzed variables in
your code. To detect such cases, you need to invoke the gcc compiler with the two options
-Wuninitialzed and -O. Assume you have the following code:

#include <stdio.h>

/* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 */

main()

{

int fahr;

char celsius, noUseVar;

int lower, upper, step;

lower = 0; /* lower limit of temperature scale */

upper = 300; /* upper limit */

step = 20; /* step size */

fahr = lower;

fahr = noUseVar;

while (fahr <= upper) {

celsius = 5 * (fahr-32) / 9;

printf("%c\t%d\n", fahr, celsius);

fahr = fahr + step;

}

}

Save the above code in a file called celsius uninitilazed.c and compile it as follows:

gcc -Wuninitialized -O celsius uninitilazed.c -o celsius uninitilazed

Check on the warning message that you get regarding the variable noUseVar.

The -O option of the gcc invokes code optimization. The gcc compiler will thus remove from the
generated code any piece of your program that it doesn’t deem necessary (e.g. unused variables,
loops that manipulate variables that will not be used when the loop ends, etc). You are thus
advised to use it with caution.

As an example on optimization, consider the following code:

#include <stdio.h>

int main()

{

int i, j;

i = 1; j = 2;

printf("i = %d\t j = %d\n", i, j);

// for (i = 0; i < 1000; i++);

// for (i = 0; i < 1000; i++);

// while (j--);

// while (j--);

5

return(0);

}

Save the above code in a file called optimize.c and compile it as follows:

gcc optimize.c -o optimize

Note the size of the executable optimize by executing ls -l optimize.

Now remove the comments from the 4 commented lines in file optimize.c and compile it as
follows:

gcc -Wuninitialized -O optimize.c -o optimize

Note the size of the newly generated executable by executing ls -l optimize and notice that
its size did not increase despite the increase in code lines. The reason is that during optimization,
the gcc compiler removed any code it did not think was necessary!

If you wish to get all types of warnings (other than those shown by the optimization option -O),
you need to invoke the gcc compiler with the -Wall option as follows:

gcc -Wall celsius uninitilazed.c -o celsius uninitilazed

Check on the warning messages that you get.

Note 1:

Students always need to keep an open eye on warnings and not decide to ignore them. Sometimes
warnings might hide potential malfunction of your application. Have a quick look on the warning
messages and then decide if it is safe to ignore them or not.

Note 2:

Below are some specific warning options for the gcc compiler that can be selected individually.
Do man gcc to get to know the remaining options.

gcc option Meaning

-Wcomment Warns about nested comments

-Wformat Warns about the incorrect use of format strings in functions such as printf

and scanf

-Wimplicit Warns about any functions that are used without being declared

-Wreturn-type Warns about functions that are defined without a return type but not

declared void

-Wconversion Warns about implicit type conversions that could cause unexpected results,

such as conversions between floating-point and integer types

-Wshadow Warns about the redeclaration of a variable name in a scope where it has

already been declared

0.3.2 Creating executables from object files

An executable might be the result of compiling multiple C-files. In the above example, we
have seen how to generate an executable from a single file. We’ll see below how to create an
executable that depends on multiple C-files.

Assume you have the following code:

6

#include <stdio.h>

/* print the sum of 2 variables */

main()

{

int s1, s2, s3, s4, res1, res2;

s1 = 1; s2 = 2;

s3 = 3; s4 = 4;

res1 = sumVal(s1, s2);

res2 = sumVal(s3, s4);

printf("res1 = %d\n", res1);

printf("res2 = %d\n", res2);

}

Save the above code in a file called object 1.c.

Type the following code in a file named object 2.c:

#include <stdio.h>

int sumVal(int val1, int val2)

{

return(val1 + val2);

}

If you compile the file object 1.c as follows:

gcc object 1.c -o object 1

you’ll get an error message stating that the function sumVal is undefined! That was an expected
error since we know that the function sumVal is not defined in the C-file object 1.c. It is
defined in the C-file object 2.c.

To compile both files and generate an executable that depends on the 2 files, we do the following:

gcc -c object_1.c

gcc -c object_2.c

The object files object 1.o and object 2.o will be generated from the previous 2 compilation
commands. To generate the executable named object now, we execute the command:

gcc object_1.o object_2.o -o object

We say that the 2 object files have been linked to generate the executable2. Indeed, the gcc

compiler uses the linker GNU ld to link the 2 files. The linking phase is invisible to users. The
executable object can now be invoked as:

./object.

0.3.3 Inclusion of header files during compilation

During compilation, the gcc compiler knows about the location of system header files such as
stdio.h or stdlib.h and thus includes them if needed. By default, gcc searches the following
directories for header files:

2http://www.network-theory.co.uk/docs/gccintro

7

/usr/local/include/

/usr/include/

The list of directories for header files is often referred to as the include path. The directories
on these paths are searched in order, from first to last in the two lists above. For example, a
header file found in /usr/local/include takes precedence over a file with the same name in
/usr/include.

The gcc compiler does not know about the location of user-defined header files, unless they are
located in the same directory that contains the C-files. If not, the -I directive can be used.

For example, assume you have the following code:

#include <stdio.h>

#include "myHeader.h"

/* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 */

main()

{

int fahr;

char celsius;

int lower, upper, step;

lower = 0; /* lower limit of temperature scale */

upper = 300; /* upper limit */

step = 20; /* step size */

fahr = lower;

while (fahr <= upper) {

celsius = 5 * (fahr-32) / 9;

printf("%c\t%d\n", fahr, celsius);

fahr = fahr + step;

}

}

Save the above code in a file called celsius header.c. Assume that the file myHeader.h is
located in the folder include under the current directory. To compile successfully the file
celsius header.c, execute the following:

gcc -Iinclude celsius header.c -o celsius header

The -I directive instructs the gcc compiler to include the folder named include while searching
for header files during the compilation phase.

Note:

You should never place the absolute paths of header files in #include statements in your source
code, as this will prevent the program from compiling on other systems. The -I option or the
C INCLUDE PATH variable should always be used to set the include path for header files. If we
assume your shell to be bash, you can update the the C INCLUDE PATH environment variable as
follows:

C_INCLUDE_PATH=$C_INCLUDE_PATH:/home/user/include

You need afterwards to export the environment variable C INCLUDE PATH as follows:

export C INCLUDE PATH

8

The shell command export is needed to make the environment variable available to programs
outside the shell itself, such as the compiler. It is only needed once for each variable in each
shell session, and can also be set in the appropriate login file.

0.3.4 Inclusion of libraries during compilation (Linking with libraries)

A library is a collection of precompiled object files which can be linked into programs. The most
common use of libraries is to provide system functions, such as the square root function sqrt

found in the C math library.

Libraries are typically stored in special archive files with the extension .a, referred to as static
libraries. They are created from object files with a separate tool, the GNU archiver ar, and
used by the linker to resolve references to functions at compile-time. We will see later how to
create libraries using the ar command.

The standard system libraries are usually found in the directories /usr/lib, /usr/local/lib
and /lib. For example, the C math library is typically stored in the file /usr/lib/libm.a on
Unix-like systems. The corresponding prototype declarations for the functions in this library
are given in the header file /usr/include/math.h. The C standard library itself is stored in
/usr/lib/libc.a and contains functions specified in the ANSI/ISO C standard, such as printf.
This library is linked by default for every C program.3

As an example, consider the following code:

#include <math.h>

#include <stdio.h>

int main (void)

{

double x = sqrt (2.0);

printf ("The square root of 2.0 is %f\n", x);

return 0;

}

Save the above code in a file called calc.c. Trying to create an executable from this source file
alone causes the compiler to give an error complaining about the unknown function sqrt4.

The problem is that the reference to the sqrt function cannot be resolved without the external
math library libm.a. The function sqrt is not defined in the program or the default library
libc.a, and the compiler does not link to the file libm.a unless it is explicitly selected.

To enable the compiler to link the sqrt function to the main program calc.c, we need to supply
the library libm.a. One obvious way to do this is to specify it explicitly on the command line:

gcc -Wall calc.c /usr/lib/libm.a -o calc.

The library libm.a contains object files for all the mathematical functions, such as sin, cos,
exp, log and sqrt. The linker searches through these to find the object file containing the sqrt
function.

The executable file calc includes the machine code for the main function and the machine code
for the sqrt function, copied from the corresponding object file in the library libm.a

To avoid the need to specify long paths on the command line, the compiler provides a short-cut

3http://www.network-theory.co.uk/docs/gccintro
4Note that on some Linux distributions such as Ubuntu, the mathematical library is included by default. You

might thus not get an error while compiling file calc.c

9

option -l for linking against libraries. For example, the following command:

gcc -Wall calc.c -lm -o calc

is equivalent to the original command above using the full library name /usr/lib/libm.a.

In general, the compiler option -lNAME will attempt to link object files with a library file
libNAME.a in the standard library directories.

Note 1:

If a library is missing from the link path. It can be added to the link path using the option -L

as follows:

-L/home/user/library dir

If the user intends to link with a library called gbdm for example that is located in the above
path, the compilation should be as follows:

gcc -Wall -L/home/user/library dir calc.c -lgbdm

As for header files, libraries can be included in the link path using the environment variable
LIBRARY PATH as follows (assuming your shell is bash):

LIBRARY_PATH=$LIBRARY_PATH:/home/user/library_dir

Note 2:

To specify multiple search path directories on the command line, the options -I and -L can be
repeated as follows:

gcc -I. -I/opt/gdbm-1.8.3/include -I/net/include -L. -L/net/lib calc.c -lgbdm

0.4 Creating a static library

We’ll show below an example on how to create a static library using the GNU archiver ar

without getting lost in the details5. We will create a small library libhello.a containing two
functions hello and bye.

Assume you have the following code:

#include <stdio.h>

#include "hello.h"

void hello (const char * name)

{

printf ("Hello, %s!\n", name);

}

Save the above code in a file called hello fn.c

Create the C-file bye fn.c that contains the following code:

#include <stdio.h>

#include "hello.h"

void bye (void)

{

printf ("Goodbye!\n");

}

5http://www.adp-gmbh.ch/cpp/gcc/create lib.html

10

Create the header file hello.h that contains the prototypes of the 2 functions seen above:

void hello (const char * name);

void bye (void);

Now compile the 2 C-files hello fn.c and bye fn.c as follows:

gcc -Wall -c hello_fn.c

gcc -Wall -c bye_fn.c

We can create the library by combining the 2 object files into a static library as follows:

ar cr libhello.a hello_fn.o bye_fn.o

The option cr stands for create and replace. If the library does not exist, it is first created. If
the library already exists, any original files in it with the same names are replaced by the new
files specified on the command line. Execute man ar to see a detailed description of options for
the command ar. The first argument libhello.a is the name of the library. The remaining
arguments are the names of the object files to be copied into the library.

The archiver ar also provides a table of contents option t to list the object files in an existing
library:

ar t libhello.a

The output will be:

hello_fn.o

bye_fn.o

We can now create a third C-file called main hello.c that uses the 2 functions hello and bye

by linking with the library libhello.a as follows:

#include "hello.h"

int main (void)

{

hello ("everyone");

bye ();

return 0;

}

We then link with library libhello.a as follows:

gcc -Wall main_hello.c libhello.a -o hello

or as follows:

gcc -Wall -L. main_hello.c -lhello -o hello

0.4.1 Creating a shared library

Shared libraries are handled with a more advanced form of linking, which makes the executable
file smaller. They use the extension .so, which stands for shared object.

An executable file linked against a shared library contains only a small table of the functions it
requires, instead of the complete machine code from the object files for the external functions.
Before the executable file starts running, the machine code for the external functions is copied
into memory from the shared library file on disk by the operating system–a process referred to
as dynamic linking.

11

Dynamic linking makes executable files smaller and saves disk space, because one copy of a
library can be shared between multiple programs. Most operating systems also provide a virtual
memory mechanism which allows one copy of a shared library in physical memory to be used
by all running programs, saving memory as well as disk space.

Furthermore, shared libraries make it possible to update a library without recompiling the
programs which use it (provided the interface to the library does not change).

Because of these advantages gcc compiles programs to use shared libraries by default on most
systems, if they are available. Whenever a static library libNAME.a would be used for linking
with the option -lNAME, the compiler first checks for an alternative shared library with the same
name and a .so extension.

As with static libraries, an object file is created. The -fPIC of the gcc compiler tells gcc to
create position independant code which is necessary for shared libraries:

gcc -Wall -c -fPIC hello_fn.c

gcc -Wall -c -fPIC bye_fn.c

Now you create the shared library as follows:

gcc -shared -Wl,-soname,libhello.so.1 -o libhello.so.1.0.1 hello_fn.o bye_fn.o

Note 1:

The library must start with the three letter lib.

Note 2:

When an executable that links with a shared library is run, its loader function must find the
shared library in order to load it into memory. By default the loader searches for shared libraries
only in a predefined set of system directories, such as /usr/local/lib and /usr/lib. If the
library is not located in one of these directories it must be added to the load path.

The simplest way to set the load path is through the environment variable LD LIBRARY PATH.
For example, the following command sets the load path to /opt/gdbm-1.8.3/lib (assuming
your shell is bash):

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/gdbm-1.8.3/lib

0.4.2 Defining macros for the C preprocessor

The C preprocessor can define macros using the conditional #ifdef directive. Consider the
below code:

#include <stdio.h>

int main (void)

{

#ifdef TEST

printf ("Test mode\n");

#endif

printf ("Running...\n");

return 0;

}

Save the above code in a file called test.c.

When the macro is defined, the preprocessor includes the corresponding code up to the closing
#endif command. In this example, the macro which is tested is called TEST, and the conditional

12

part of the source code is a printf statement which prints the message Test mode.

The gcc option -DNAME defines a preprocessor macro NAME from the command line. If the
program above is compiled with the command-line option -DTEST, the macro TEST will be
defined and the resulting executable will print both messages:

gcc -Wall -DTEST test.c -o test

If the same program is compiled without the -D option then the Test mode message is omitted
from the source code after preprocessing, and the final executable does not include the code for
it:

gcc -Wall test.c -o test

Note:

In addition to being defined, a macro can also be given a value. This value is inserted into the
source code at each point where the macro occurs. Consider the following example:

#include <stdio.h>

int main (void)

{

printf ("Value of NUM is %d\n", NUM);

return 0;

}

Save the above code in a file called testval.c.

To define a macro with a value, the -D command-line option can be used in the form -DNAME=VALUE.
For example, the following command line defines NUM to be 100 when compiling the program
above:

gcc -Wall -DNUM=100 testval.c -o testval

If you run the generated executable testval, you get the following output:

Value of NUM is 100

As another example, you should know that whatever the value of the macro is, it is inserted
directly into the source code at the point where the macro name occurs. For example, the
following definition expands the occurrences of NUM to 2+2 during preprocessing:

gcc -Wall -DNUM="2+2" testval.c -o testval

If you run the generated executable testval, you get the following output:

Value of NUM is 4

If you intend to pass a string argument to the gcc compiler, you can execute the following
command:

gcc -DMSG=\"Hello\" execFile.c -o execFile

Consider the following example that illustrates the passing of string arguments to the gcc

compiler:

#include <stdio.h>

int main() {

printf("MSG: %s\n", MSG);

}

Save the above code in a file called define text.c and compile it as follows:

gcc -DMSG=\"Hello\" define text.c -o define text

Run the executable define text and check the output that you get.

13

Appendix

Review of the C-language

The appendix below intends to give students a better insight in the C-language. Students are
assumed to be already familiar with that programming language. We will not go in the details
of control flow (e.g. if-else, switch, while, for, do-while, break, continue, goto). The
focus of the experiment will be on tips and tricks that the students might even use in other
programming languages6.

0.5 Objectives

The objectives of the appendix is to teach the following:

• Give a brief introduction to the history of the C-language.

• Give students a solid background about the C-language without getting lost in details.

• Show students some tips and tricks about how to write efficient C-code.

• Prepare students to the compilation/debuging environment that will follow in the next
experiment.

0.6 The C-language

C is a general-purpose programming language. It has been closely associated with the UNIX
operating system where it was developed, since both the system and most of the programs that
run on it are written in C. The language, however, is not tied to any one operating system or
machine; and although it has been called a system programming language because it is
useful for writing compilers and operating systems, it has been used equally well to write major
programs in many different domains.

C provides the fundamental control-flow constructions required for well-structured programs:
statement grouping, decision making (if-else), selecting one of a set of possible values (switch),
looping with the termination test at the top (while, for) or at the bottom (do), and early loop
exit (break).

Functions may return values of basic types, structures, unions, or pointers. Any function may
be called recursively. Function definitions may not be nested but variables may be declared
in a block-structured fashion. The functions of a C program may exist in separate source files
that are compiled separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion of other source
files, and conditional compilation.

C is a relatively low-level language. This characterization is not pejorative; it simply means that
C deals with the same sort of objects that most computers do, namely characters, numbers, and
addresses. These may be combined and moved about with the arithmetic and logical operators
implemented by real machines.

6Brian W. Kernighan and Dennis M. Ritchie, The C programming Language - Prentice-Hall, 1988.

14

0.6.1 Use of arrays

An array is a data structure that stores data of the same nature in successive locations. Students
are familiar with definitions such as:

int nDigit[10]

In the above example, you are reserving space for exactly 10 integers that will occupy memory
regardless of being used or not.

If you do not intend to use the above array during the lifetime of the process, it is a good
technique to allocate memory when needed and free it once done with it. You can thus keep
memory available for other usage and other processes as well. For dynamic memory allocation,
you can define the array as follows:

int *nDigit = NULL

and use the malloc function as follows:

nDigit = (int *) malloc(sizeof(int) * 10);

To access a cell in the array nDigit, you can use either the conventional notation:

nDigit[5]

or the following notation:

*(nDigit + 5)

When the array nDigit is no more needed, you can free it as follows:

free(nDigit)

Note that you are not allowed to free the same array more than once. Note as well that it is
good pratice to initialize dynamically allocated arrays to NULL and test if the array is allocated
before using it. That might make you avoid lots of potential problems you might get into.

0.6.2 Use of symbolic constants

It’s a bad practice to bury constants in a program; they convey little information to someone
who might have to read the program later, and they are hard to change in a systematic way.
One way to deal with magic numbers is to give them meaningful names. A #define line defines
a symbolic name or symbolic constant to be a particular string of characters:

#define name replacement list

Examples can be as follows:

#define LOWER 0

#define UPPER 100

#define MID 50

It is good practice to have these symbolic constants in upper case always so as not to mix them
with variables.

0.6.3 Functions

Functions are subroutines that you can call as many time as you need during the lifetime course
of a process. A function provides a convenient way to encapsulate some computation, which can
then be used without worrying about its implementation. With properly designed functions, it
is possible to ignore how a job is done; knowing what is done is sufficient. Here is the function
power and a main program to exercise it, so you can see the whole structure at once:

#include <stdio.h>

15

int power(int m, int n);

/* test power function */

main()

{

int i;

for (i = 0; i < 10; ++i)

printf("%d %d %d\n", i, power(2,i), power(-3,i));

return 0;

}

/* power: raise base to n-th power; n >= 0 */

int power(int base, int n)

{

int i, p = 1;

for (i = 1; i <= n; ++i)

p = p * base;

return p;

}

Multiple things should be noted in the above function:

• The definition int power(int m, int n); is called the function prototype. It explains
the return type of the function as well as the number and type of arguments that a user
should pass when calling the function power. It is good practice to put function prototypes
in header files (e.g. files that end with the extension .h) that are included by #include

at the front of each source file.

• Writing the bulk of the code in functions has the advantage of keeping the developer
focused on the problem he/she has at hand instead of getting lost in the details.

• If the function power end up being useful to multiple applications, it is good practice to
create a library that contains the code for that function. In any application that needs
the function power, you need to link with that library while compiling the application
(covered in the next experiment).

0.6.4 External variables

Variables defined within functions are called local variables or automatic variables since their
scope is limited to the functions to which they belong.

As an alternative to automatic variables, it is possible to define variables that are external to
all functions, that is, variables that can be accessed by name by any function.

An external variable must be defined, exactly once, outside of any function; this sets aside
storage for it. The variable must also be declared in each function that wants to access it; this
states the type of the variable. The declaration may be an explicit extern statement or may be
implicit from context.

#include <stdio.h>

int max; /* maximum length seen so far */

16

main()

{

int len;

extern int max;

max = 0;

while ((len = getline()) > 0)

if (len > max) {

max = len;

printf("Longer line detected\n");

}

if (max > 0) /* there was a line */

printf("%d", max);

return 0;

}

0.6.5 Enumeration constant

An enumeration is a list of constant integer values, as in:

enum boolean { NO, YES };

The first name in an enum has value 0, the next 1, and so on, unless explicit values are specified.
If not all values are specified, unspecified values continue the progression from the last specified
value, as the second of these examples:

enum escapes { BELL = ’\a’, BACKSPACE = ’\b’, TAB = ’\t’,

NEWLINE = ’\n’, VTAB = ’\v’, RETURN = ’\r’ };

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC };

/* FEB = 2, MAR = 3, etc. */

Enumerations provide a convenient way to associate constant values with names, an alternative
to #define with the advantage that the values can be generated for you. Although variables of
enum types may be declared, compilers need not check that what you store in such a variable
is a valid value for the enumeration. Nevertheless, enumeration variables offer the chance of
checking and so are often better than #defines. In addition, a debugger may be able to print
values of enumeration variables in their symbolic form.

0.6.6 Type conversion

It might be necessary to convert data from type to type. It is common to transform a string
into an integer or float equivalent as follows:

char strValue[] = "12345";

int intValue = atoi(strValue); /* convert the string value to integer */

float floatValue = atof(strValue); /* convert the string value to float */

long longValue = atol(strValue); /* convert the string value to long */

17

0.6.7 Arithmetic Operators

The binary arithmetic operators are +, -, *, /, and the modulus operator %.

The % operator cannot be applied to a float or double.

The binary + and - operators have the same precedence, which is lower than the precedence of
*, / and %, which is in turn lower than unary + and -. Arithmetic operators associate left to
right.

0.6.8 Relational and Logical Operators

The relational operators are:

> >= < <=

They all have the same precedence. Just below them in precedence are the equality operators:

== !=

Relational operators have lower precedence than arithmetic operators, so an expression like i <

lim - 1 is taken as i < (lim - 1), as would be expected.

More interesting are the logical operators && and ||. Expressions connected by && or || are
evaluated left to right, and evaluation stops as soon as the truth or falsehood of the result is
known.

The precedence of && is higher than that of ||, and both are lower than relational and equality
operators.

0.6.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral operands,
that is, char, short, int, and long, whether signed or unsigned.

& bitwise AND

| bitwise inclusive OR

∧ bitwise exclusive OR

<< left shift

>> right shift

∼ one’s complement (unary)

Note that the left shift operator << is equivalent to multiply by 2 while the shift right operator
>> is equivalent to divide by 2.

The bitwise AND operator & is often used to mask off some set of bits, for example:

n = n & 0177;

sets to zero all but the low-order 7 bits of n.

The bitwise OR operator | is used to turn bits on:

x = x | SET ON;

sets to one in x the bits that are set to one in SET ON.

The bitwise exclusive OR operator ∧ sets a one in each bit position where its operands have
different bits, and zero where they are the same.

18

The unary operator ∼ yields the one’s complement of an integer; that is, it converts each 1-bit
into a 0-bit and vice versa. For example:

x = x & ∼077

sets the last six bits of x to zero.

0.6.10 Conditional Expressions

The conditional expression, written with the ternary operator "?:", provides an alternate way to
write conditional statements with the if-else clauses. As an example, the following expression:

z = (a > b) ? a : b; /* z = max(a, b) */

will set the value of z to either a or b, whichever is bigger.

Parentheses are not necessary around the first expression of a conditional expression, since the
precedence of ?: is very low, just above assignment. They are advisable anyway, however, since
they make the condition part of the expression easier to see.

0.6.11 Use of macros

A macro is a definition that has the form:

#define name replacement list

It calls for a macro substitution of the simplest kind - subsequent occurrences of the token name

will be replaced by the replacement text. Normally the replacement text is the rest of the line,
but a long definition may be continued onto several lines by placing a \ at the end of each line
to be continued.

Examples

#define MAX(A, B) ((A) > (B) ? (A) : (B))

#define SWAP(A, B, type) { type tmp; \
tmp = (A); \
(A) = (B); \
(B) = tmp; \

}

Although it looks like a function call, a use of MAX expands into in-line code. Each occurrence of
a formal parameter (here A or B) will be replaced by the corresponding actual argument. Thus
the line:

x = MAX(p+q, r+s);

will be replaced by the line:

x = ((p+q) > (r+s) ? (p+q) : (r+s));

To ensure that a routine is really a function, not a macro, names may be undefined with the
#undef statement as follows:

#undef getchar

int getchar(void) {...}

0.6.12 Conditional Inclusion

It is possible to control preprocessing with conditional statements that are evaluated during pre-
processing. This provides a way to include code selectively, depending on the value of conditions
evaluated during compilation.

The #if line evaluates a constant integer expression. If the expression is non-zero, subsequent

19

lines until an #endif or #elif or #else are included. (The preprocessor statement #elif is
like else-if.) The expression defined(name) in a #if is 1 if the name has been defined, and
0 otherwise.

For example, to make sure that the contents of a file hdr.h are included only once, the contents
of the file are surrounded with a conditional like this:

#if !defined(HDR)

#define HDR

/* contents of hdr.h go here */

#endif

The statement #if can be replaced by #ifndef as in the following example:

#ifndef HDR

#define HDR

/* contents of hdr.h go here */

#endif

Another useful example is shown below. It relates to deciding which header file to include based
on the OS type:

#if SYSTEM == SYSV

#define HDR "sysv.h"

#elif SYSTEM == BSD

#define HDR "bsd.h"

#elif SYSTEM == MSDOS

#define HDR "msdos.h"

#else

#define HDR "default.h"

#endif

0.6.13 Header Files

Header files are files that end with the extension .h. They are mainly used to centralize the
definitions and declarations shared among files, so that there is only one copy to get and keep
right as the program evolves. Header files can contain other header files as well.

Usually, header files might contain the following elements:

• Other header files.

• Global variables shared among multiple C-files.

• Common structures or unions that are needed by some C-files.

• Function prototypes.

• Defined constants (by using the #define directive) and defined macros.

20

0.6.14 Command-line Arguments

In environments that support C, there is a way to pass command-line arguments or parameters
to a program when it begins executing. When main is called, it is called with two arguments. The
first (conventionally called argc, for argument count) is the number of command-line arguments
the program was invoked with; the second (argv, for argument vector) is a pointer to an array
of character strings that contain the arguments, one per string. We customarily use multiple
levels of pointers to manipulate these character strings.

By convention, argv[0] is the name by which the program was invoked, so argc is at least 1.
If argc is 1, there are no command-line arguments after the program name.

Example

./showAll 10 Khalil 2300

In the above example, argc is 4, argv[0] is ./showAll, argv[1] is 10, argv[2] is Khalil and
argv[3] is 2300. Note that all arguments are passed as strings. As such, the arguments 10 and
2300 must be converted to integers if you intend to use them as such.

0.7 Structures

A structure is a collection of one or more variables, possibly of different types, grouped together
under a single name for convenient handling. (Structures are called records in some languages).
Structures help to organize complicated data, particularly in large programs, because they per-
mit a group of related variables to be treated as a unit instead of as separate entities.

One traditional example of a structure is the payroll record: an employee is described by a set
of attributes such as name, address, social security number, salary, etc. Some of these in turn
could be structures: a name has several components, as does an address and even a salary. The
structure below describes an employee structure.

struct address {

int streetNumber;

char streetname[20];

char city[20];

char state[20];

};

struct employee {

char surName[20];

char familyName[20];

int age;

float salary;

address adr;

};

Structures can be passed as arguments to functions such as:

addEmployee(struct employee emp)

And functions can return variables of type structure as follows:

struct employee updateEmployee(struct employee emp, char *name)

{

strcpy(emp.name, name);

return(emp);

}

21

A structure can also self-reference such that it can contain an instance of itself. An example is
the definition of a node in a binary tree as follows:

struct tnode { /* the tree node: */

char *word; /* points to the text */

int count; /* number of occurrences */

struct tnode *left; /* left child */

struct tnode *right; /* right child */

};

0.7.1 Typedef

C provides a facility called typedef for creating new data type names. For example, the decla-
ration:

typedef int Length;

makes the name Length a synonym for int. The type Length can be used in declarations, casts,
etc., in exactly the same ways that the int type can be:

Length len, maxlen;

Length *lengths[];

Similarly, the declaration:

typedef char *String;

makes String a synonym for char * or character pointer, which may then be used in declarations
and casts:

String p,lineptr[MAXLINES];

int strcmp(String, String);

p = (String) malloc(100);

Another example would be:

typedef struct tnode { /* the tree node: */

char *word; /* points to the text */

int count; /* number of occurrences */

struct tnode *left; /* left child */

struct tnode *right; /* right child */

} Treenode;

0.7.2 Unions

A union is a variable that may hold (at different times) objects of different types and sizes,
with the compiler keeping track of size and alignment requirements. Unions provide a way to
manipulate different kinds of data in a single area of storage, without embedding any machine-
dependent information in the program.

As an example suppose that a constant may be an int, a float, or a character pointer. The
value of a particular constant must be stored in a variable of the proper type, yet it is most
convenient for table management if the value occupies the same amount of storage and is stored
in the same place regardless of its type. This is the purpose of a union - a single variable that
can legitimately hold any of one of several types. The syntax is based on structures:

union u_tag {

int ival;

float fval;

char *sval;

} u;

22

The variable u will be large enough to hold the largest of the three types; the specific size is
implementation-dependent. Any of these types may be assigned to u and then used in expres-
sions, so long as the usage is consistent: the type retrieved must be the type most recently
stored. It is the programmer’s responsibility to keep track of which type is currently stored
in a union; the results are implementation-dependent if something is stored as one type and
extracted as another.

Syntactically, members of a union are accessed as:

union-name.member

or:

union-pointer->member

If the variable utype is used to keep track of the current type stored in u, then one might see
code such as:

if (utype == INT)

printf("%d\n", u.ival);

else if (utype == FLOAT)

printf("%f\n", u.fval);

else if (utype == STRING)

printf("%s\n", u.sval);

else

printf("bad type %d in utype\n", utype);

0.7.3 Bit-fields

When storage space is at a premium, it may be necessary to pack several objects into a single
machine word.

A bit-field, or field for short, is a set of adjacent bits within a single implementation-defined
storage unit that we will call a word. Consider the following 3 fields:

struct {

unsigned int is_keyword : 1;

unsigned int is_extern : 1;

unsigned int is_static : 1;

} flags;

This defines a variable table called flags that contains three 1-bit fields. The number following
the colon represents the field width in bits. The fields are declared unsigned int to ensure that
they are unsigned quantities.

Individual fields are referenced in the same way as other structure members: flags.is keyword,
flags.is extern, etc. Fields behave like small integers, and may participate in arithmetic
expressions just like other integers. Thus we can write:

flags.is_extern = flags.is_static = 1;

to turn the bits on:

flags.is_extern = flags.is_static = 0;

to turn them off; and:

if (flags.is_extern == 0 && flags.is_static == 0)

...

to test them.

23

0.7.4 File Access

Before a file can be read or written, it has to be opened by the library function fopen. The
function fopen takes an external file name, does some housekeeping and negotiation with the
operating system (details of which needn’t concern us), and returns a pointer to be used in
subsequent reads or writes of the file.

This pointer, called the file pointer, points to a structure that contains information about the file,
such as the location of a buffer, the current character position in the buffer, whether the file is
being read or written, and whether errors or end of file have occurred. Users don’t need to know
the details, because the definitions obtained from <stdio.h> include a structure declaration
called FILE. The only declaration needed for a file pointer is exemplified by:

FILE *fp;

FILE *fopen(char *name, char *mode);

The mode can be r for reading, w for writing and a for appending.

You need always to check on the return value that fopen returns when opening a file. If the
return value is NULL, then the file could not be opened. In read mode, that might mean that
the file was not found or you have no permission to read it. If in write mode, that might mean
that you have no free space on disk or have no permission to write on that file.

When you are done handling the file, it needs to be closed to free the memory structures used
by the file. For that, we use the function fclose as follows:

fclose(fp)

The function unlink(char *name) removes the file name from the file system. It corresponds
to the standard library function remove.

24

